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A variational-difference method, proposed for solving two-dimensional integral equations of the convolution type in arbitrary 
regions [1], and highly recommended for solving dynamic contact problems [2, 3], is modified for the case of three-dimensional 
cracks. A general scheme of the method is given and ways of overcoming the difficulties that arise due to the singularity of the 
kernel, the increase in its symbol at infinity and taking into account the behaviour of the solution at the boundary of the region, 
are indicated. Calculations are carried out for rectangular and L-shaped cracks which show the effects of the shape of the crack, 
the angle of incidence, the type of incident wave and the frequency on the reflection coefficient, the radiation pattern and the 
redistribution of the energy in the reflected field. © 1996 Elsevier Science Ltd. All rights reserved. 

The analysis of the characteristics of the reflected wave field is a classical problem in geophysics, ultra- 
sonic flaw detection:, tomography, etc. In the short-wave band, when the dimensions of the obstacle 
considerably exceed the wavelength, the generalized ray method is employed for the successful 
mathematical modelling of the process [4], while in the case of medium and long waves it is necessary 
to solve boundary integral equations, which in the case of infinitely thin cracks considered here, reduces 
to Wiener-Hopf equations in the unknown jump in the displacements at the slit. In the plane case (a 
strip crack) and for circular cracks, theses equations are one-dimensional and they can be solved fairly 
effectively by expanding the unknown jump in displacements in orthogonal polynomials with a weight 
which takes into acoount the behaviour of the solution at the edges of the crack (detailed results for 
bulk waves incident on a circular crack at an arbitrary angle can be found, for example, in [5]). 

For rectangular cracks it is necessary to use an expansion in Chebyshev polynomials in two spatial 
variables [6, 7], whic]h involves increased computer costs due both to the increase in the dimension of 
the systems of relatively unknown coefficients of the expansion, and to the need to take into account 
double improper integrals when setting up the system matrix. At the same time, the rapid convergence, 
due to considering the root behaviour of the solution on the crack contour, is preserved. Unfortunately, 
this basis cannot be used for non-rectangular regions, and hence an approximation of the displacement 
jump by splines, specified in subregions in which the region occupied by the crack is divided into a certain 
mesh [8, 9], is used for a crack of arbitrary shape. The known behaviour at the edge was taken into 
account in [9] by introducing special boundary splines containing the root factor. 

The method used in present paper can be regarded as a version of the general approach [8, 9], which 
enables the computing costs to be reduced considerably when the system is being set up by an appropriate 
choice of the form of the basis functions and by changing to single non-singular integrals. The approach 
described in [10], in which, as in [2], an axisymmetric basis is also proposed, is similar to ours. Unlike 
[10], we use another criterion of convergence and, for regions with rectangular perpendicular boundaries 
(rectangular, L-shaped, H-shaped, etc. cracks) we propose an approximate method of taking the 
behaviour at the edge into account. 

1. The problem of the diffraction of a specified wave field u0(x)e -/~ by a crack (an infinitely thin cut 
in elastic space with stress-free edges), occupying a region fl in the x, y plane of a Cartesian system of 
coordinates x = {x, y:, z }  can be reduced to solving a system of two-dimensional integral equations for 
the unknown jump in the displacements of its edges v(x, y) = u(x) Iz=0+ - u(x)Ix=0- 

L v  -- ~ ~ l ( x  - ~, y - "q)v(~,'q)d~d'q = f(x, y), (x, y) ~ ~ (1.1) 
~2 
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where 
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l oo 0o - i (Ot lX+°t2Y) 
l(x,Y)=-7~-_2 ~ ~ L(Otl.,l~2,0t)e . dOtldO~2, f(x,y)=-Tzuolz= 0 

4 / t  _** _~ .  

and Tz is the stress operator for the area with normal z. 
In deriving (1.1) the well-known representation of the wave field in an elastic half-space in terms of 

its Green's matrix k(x, y, z) and the vector of the unknown load Tzulz = o = q(x, y) is used [3] 

I 
u+(x) = ~ ~ .[ K+(tXI ,ot2,z)Q(tx I ,(x2)e-it°qx+ct2Y)dottdot2 

rtr2 
(1.2) 

Here and henceforth the superscript plus corresponds to z > 0, the superscript minus corresponds 
to z < 0, and K ~, Q are the Fourier symbols of k -+ and q, respectively. In view of the discontinuity at 
z = 0 of the field of the reflected waves ul(x) it follows from (1.2) that 

V ( O t l ,  0 t2 )  = [K+(~t, ot 2, 0) - K-(ot I , ot 2, 0)]Q(oq, ct 2) 

and, conversely 

Q(al ,  a2) = L(at, ot2)V(a I, or2) " (1.3) 

where 

L =[K + - K- ]-llz=0, 

For an homogeneous isotropic space 

V(tx,, 0t 2 ) = ~ ~ v(x, y)ei(°"x+a2Y)dxdy (1.4) 
f l  

(tI2Mo+O~2No)I~ 2 o q a 2 ( M o - N o ) l a  2 0 

L(cq,~2,0t) = otlo~2(Mo-No)lO~ 2 (o~2Mo +O~2No)lO~2 0 

0 0 Ro 

M o ( a ) = - A ( a ) / ( × ~ 0 2 ) ,  N 0 ( a ) = - I a o  I / 2 ,  R 0 ( a ) = - A ( a ) / ( × ~ o l )  

A(ct) = 2~t(a20=62 - (a  2 - ×~)2) 

2 R e o .  >- 0, I m o .  ~< 0, n = 1,2 

:o ,o  :o , , ,  

where ~ ano IX are Lam6 constants and p is the density. 
The structure of the matrix I here is such that system (1.1) can in fact be split into two independent 

matrices: in terms of the tangential and normal components of the jump v. In the general case of a 
vertically-inhomogeneous space, for example, for a crack on the surface of a joint between two 
half-spaces with different properties, there is no such splitting, but the main properties of the 
elements of the matrix L(al ,  0t2), which are essential for the proposed approach to be applicable, are 
preserved. 

To discretize Eqs (1.1) axisymmetric delta-like splines, proposed earlier for solving dynamic contact 
problems [2, 3], are used. The approximate solution will be sought in the form 

~' ( x - x k Y - )'k ) (1 .5 )  vh(x'Y)=k=JE ck~Ok(x,Y), ~Pk(x,Y)=tP[ -~ , ~ 

IE - i ( 7 + l ) ( i - r 2 ) + ,  r ~  < !  
, r = C + y  2 

q~(x'Y) = / 0 ,  r ~  > 1 
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where (x~,y,) are the nodes of a square grid, which covers the region f~ with a spacing h, and N is the 
number of nodes. 

The unknown expansion coefficients ck are found from the linear algebraic system which is obtained 
when the residual Lvn - f is projected onto the same system of basis functions {tp}~V=l 

N 

ajke k = fj, j = 1,2 ..... N (1.6) 
k=l 

aJk-=:(Lq~k'~0Y)/a' fJ =(f'~0j)t~' (f'g)L2 = ~ ~ f (x ,y )g*(x ,y)dxdy  
- - ~  - o o  

(the asterisk denotes complex-conjugate quantities). 
It was shown in [3] that the fact that the functions tpk are delta-like, i.e. the fact that the condition 

| X 
-~tp(-~,  h)--.->8(x,y) as h--->0 

is satisfied, ensures that the expansion coefficients c k will converge to the values at the nodes (ok ---> 
V(Xk, Yk) as h ---> 0), which enables us to ignore the convergence of Yn to v in a continuous metric (the 
best convergence of c k was obtained when T + 1 = n, when q~(0) = 1). In other words, any deviation 
of Vn from v is permissible, and if it is necessary to obtain the form of the opening of the crack v(x, y), 
it is sufficient to use interpolation of the values ck between nodes. Here it is also easy to ensure the 
required behaviour at the boundary of fL It is important that when using Vh, in view of the fact that tPk 
is delta-like, that the convergence of the integral characteristics of the solution (the radiation pattern 
and the energy of the scattered field), should not be impaired. 

In view of the fact that tp = ~0(r) is axisymmetric, the multiple integrals in (1.6) can be reduced, using 
Parseval's equality and changing to polar coordinates, to the single form 

h,/ / .i~ i~ o~ dP(o~h)dP*(ct*h)Jo(ctrjk)o~lot a ik ffi ~ L~, Ox i ,  3y j , (1.7) 

where 

0 

Jv are Bessel functior~s and ~k is the distance between nodes. 
Changing from the matrix-kernel l(x, y) to its Fourier-symbol L(t~I, o~2, ¢t) eliminates the need to 

separate and integrate the strong singularity of the matrix-kernel l(x, y). The singular points (in the 
case considered these are ~1 and x2) do not lie on the contour of integration since the contour F bypasses 
them, deviating from the real semiaxis in the complex plane tx in accordance with the principle of limiting 
absorption [3, 11]. However, difficulties connected with the poor convergence of the integrals (1.7) at 
infinity arise here. The elements L increase as a --4 0- as O(c0~(this also leads to a singularity of l(x, 
y)), and convergence is only obtained here due to the fact that tb~(oth) decreases. When h <~ 1, the zone 
in which the decrease actually begins is shifted far to the right, which makes numerical integration 
practically impossible. Hence, the components of the functions M0, No and R0, which occur in L, and 1 
which increases and decrease as ix-, were separated in explicit form, and the integrals of these 
were expressed in terms of hypergeometric functions 3/'2, i.e. they were represented by well-converging 
series. 

An integral representation of the reflected wave field ul(x) in terms of the jump v found can be 
obtained by substituting (1.3) into (1.2). Here, by virtue of relation (1.5) 

N 
V h (cq, a 2 ) = h20(o~h) T. c ,e  i(a~x+az') (1.8) 

k=l 
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Taking into account the convergence cg ---> v(xg, Yk) as h ---> 0 and the delta-form of the basis 
(O(cth) ---> O(0) when ~ < oo, we can show that each of the terms corresponds in the limit to the 
contribution of an elementary area h x h with the centre at the node (xk, yk), i.e. expansion (1.8) is the 
integral sum for V(Ctl, ~ )  of the form (1.4) for finite ct. As ~ ---> oo the decrease in Vh((Xl, tX2) does not 
correspond to the asymptotic form V(txx, t~2), which can be written explicitly as the as asymptotic form 
of the oscillating integral (1.4), starting from the unknown form of the behaviour of ~ on the boundary 
of 3~  [12], and taken into account in (1.8). 

The behaviour of v on the boundary can be taken into account as follows: 
1. by introducing root factors for the splines along the boundary; 
2. by taking the asymptotic form of V as t~ ~ oo in (1.8); 
3. by obtaining Ck ignoring the behaviour on the boundary, then carrying out a smooth cubic 

integration between the nodes taking the root decrease at the edge into account and then using as V(tXl, 
t~2) a Fourier transformation of this approximation; 

4. by arranging the choice of the nodes so that the effect of the root decrease of v(x,y) is taken into 
account in the integral sum (1.8). 

The first method destroys the axial symmetry, i.e. the corresponding computational advantages are 
lost, and the realization of the second approach is no simpler in practice. The third method considerably 
simplifies the results without destroying the axial symmetry. It is most important that the same degree 
of acceleration of the convergence should also be achieved by the fourth method, which is the simplest 
to realize. 

The basic principle of this can be explained using the model one-dimensional integral 

b M h 
I ~xdx---h)[ -VF~k, Xl:  :Xk+h 
0 k=l "2' Xk+l 

3/2 The contribution of the first node xlof the quadrature formula equals h x/2 whereas the exact value of the integral 
in the interval t0, hi is equal to 2h3/2/3, i.e. the node Xl introduces an error of Oh 3/2, whereas the inner nodes introduce 
an error of OhL If we take Xl = h/2 + ph, then for p = 0.1133... the contribution ofx I is identical with the accurate 
value in the interval [0, h + ph]. The choice of a net with a space of preciselyph from the boundary also ensures 
the same order of convergence as method 3. Note that this choice of the nodes is only possible for regions with 
perpendicular boundaries, when all the vertical and horizontal dimensions differ by an amount that is a multiple 
of h. If this is not so, the results will be obtained in fact for another region, which approximates the initial one and 
differs from it by dimensions not greater than h/2. Obviously, with this degree of convergence the method can also 
be used in the case of an arbitrary region f~, approximated by a rectangular grid. 

Figure 1 shows a curve of the energy scattering coefficient Z as a function of the dimensionless 
frequency ×2a (a = ~/(Su)/2, and Sn is the area of the crack) for a quadratic crack for normal incidence 
(0 = 0 °) of a P-wave. The criterion for adjusting the method lies in the results obtained by Bostr6m by 
expansion in Chebyshev polynomials as in [6] (the continuous curves). The small circles represent values 
of E obtained by the fourth approach (a 20 x 20 grid). It should be noted that convergence, though 

z 

j 
z 4 ~ 8 *za 

Fig. I. 
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slower, is also observed ignoring the behaviour at the edge (the solid circles). The triangles in Fig. 1 
represent the results obtained for a circular crack [5], which show that the shape of the crack in this 
ease has only a small effect on the energy scattering coefficient. 

2. The integral representation (1.2) enables the well-known asymptotic form of volume waves in an 
elastic half-space to be used in the far zone [3] 

2 eiXn R 
u~(x)= Y a.~(q~,W)T+0(R-2), R=Ixl~,= (2.1) 

n---I 

The vector functions a~, which depend only on the spherical angles q~ and W, are expressed in terms 
of the quantities K~L,V at the stationary points Otl~ = --ancos ~p, 0v2~ = -ansin ~p. Note that here we 
have used the values of V when a < xn, i.e. the error due to the fact that the asymptotic forms V and 
Vh are not identical has an effect only when ×n >> 1, when ray methods work very well. 

Since the Rayleigh denominator A(a) is abbreviated in the product K~L, then, as might have been 
expected, there is no Rayleigh wave along the surface z = 0 in ul. However, for a vertically-inhomo- 
geneous half-space there are real poles in the elements of the matrix L, the residues in which give Stonely 
w a v e s .  

The energy of the reflected waves El, averaged over an oscillation period T = 2n/0~, defined as the 
integra ! of the energy density over the surface of the edges of the crack which radiates it, reduces, using 
(1.2), to the well-known representation for the energy of a surface source in an elastic half-space, which 
in the final analysis gives 

9. 
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N 
E I = - 2 I m l J  ( f , v ) d x d y = - E I m  ]~ (fk,et) 

ta 2 k=l 

Similarly, the use of the asymptotic form (2.1) and the representations for the energy flux density of 
the longitudinal P-waves and transverse S-waves [3] enables us, by integrating them over the sphere 
I x I = R as R ~ ~*, to obtain the fraction of the energy of the P and S waves in the flux E1 scattered by 
the crack 

E I = E e + E s (2.2) 

Satisfaction of the energy-balance equation (2.2) was used as an additional control of the numerical 
results. The calculations were carried out for rectangular and L-shaped cracks for P, S V a n d  S H  waves 
incident at angles from 0 ° to 90* in the frequency band 0 ~< ax2 ~< 10. 

The degree of energy scattering is characterized by the ratio Z = EI/Eo, where E0 is the energy 
transferred by the specified wave u0 through an area equal to the area of the crack. 

As an example, we show in Fig. 2 a graph of Y against the frequency ax2 for a rectangular 1:4 crack (the dashed 
curve) and an L-shaped crack (the continuous curve) of the same area when a Pwave (a) and an SVwave (b) are 
incident at angles of 0 = 0 °, 45 ° and 90 ° to its normal (curves 1-3, respectively). We also obtained curves of Y. against 
the angle of incidence 0, and curves of the fraction of the energy of the P and S waves in the scattered field against 
0 and u2a. Figure 3, in which we show the results for a P-wave incident on a square crack at angles of 0 and 0 °, 45 ° 
and 90 ° (curves 1-3, respectively), illustrates how Es/E1 depends on the frequency. In Fig. 4, for an angle of incidence 

Es/EIF 
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2 4 

Fig. 3. 

I 

6 8 ~ a  

( 
( 

SV-~P 

) 
% ~$V--S 

Fig. 4. 



Diffraction of elastic waves by three-dimensional cracks of arbitrary shape in a plane 283 

SV-*P !") SV- S 

Fig. 5. 

0 = 45 °, we show the radiation pattern of the scattered field (the energy densities of the P and S waves in the xz 
plane) when an SV-w~ve is incident on a square crack (the continuous curves) and an L-shaped crack (the dashed 
curve) at a frequency g2a = 2 and in Fig. 5 for 0 = 90 °. 

We wish to thank Professor Anders Bostr6m of Chalmers Technological University (Goteborg, 
Sweden), who initiated this research, for useful discussions and help in carrying it out. 

This research was supported financially by the Russian Foundation for Basic Research (94-01-01620). 

R E F E R E N C E S  

1. GOL'DSHTEIN R. V., KLEIN I. S. and ESKIN G. I., A variational-difference method of solving some integral and integro- 
differential equation.,; of three-dimensional problems of the theory of elasticity. Preprint. Inst. for Problems in Mechanics, 
Academy of Sciences of the USSR, Moscow, No. 33, 1973. 

2. BABESHKO B. A., GLUSHKOV Ye. V. and GLUSHKOVA N. V, Dynamic contact problems in arbitrary regions. ~ Akwt 
Naul~ SSSR. MTT 3, 61-67, 1978. 

3. BABESHKO V. A., GLUSHKOV Ye. V. and ZINCHENKO Zh. E, Dynam/cs o f l n h o ~ u s  Linearly Elastic Media. Nauka, 
Moscow, 1989. 

4. BABICH V. M., BULDYREV V. S. and MOLDTKOV I. A., The Space-Tune Ray Method: Linear and Non-linear Waves, 
Izd. LGU, Leningrad, 1985. 

5. KRENK S. and SCHMIDT H., Elastic wave scattering by a circular crack. Phil. Trans. Roy. Soc. London See A, 308, 1502, 
167-198, 1982. 

6. BOSTR()M A., Acou~stic scattering by a sound-hard rectangle. Y. Aeoust. Soc. America. 90, 6, 3344-3347, 1991. 
7. GUAN L and NORRIS A., Elastic wave scattering by rectanglc cracks. Int. Y. Solids Struct. 29, 12, 1549-1565, 1992. 
8. BUDRECK D. E. and ACHENBACH J. D., Scattering from three-dimensional planar cracks by the boundary integral 

equation method. Trans. ASME Y. Appl. Mech. 55, 2, 405-412, 1988. 
9. LIN W. and KEER L M., Scattering by a planar three-dimensional crack. Y. Acoust. Soc. America. 82, 4, 1442-1448, I987. 

10. VISSCHER W. M., Theory of scattering of elastic waves from flat cracks of arbitrary shape. Wave Motion $, 1, 15-32, 1983. 
11. VOROVICH I. I. and BABESHKO V. A ,  Dynamic Mired Problems of the Theory of Elastic@for Non-classical Regions. Nauka, 

Moscow, 1979. 
12. FEDORYUK M. V., 7he Method of Steepest Descent. Nauka, Moscow, 1977. 

Translated by R.C.G. 


